Skip to content

Commit de7798a

Browse files
committed
fix #200 typo
1 parent 5bc337e commit de7798a

File tree

4 files changed

+8
-6
lines changed

4 files changed

+8
-6
lines changed

content/chap0802.tex

+1-1
Original file line numberDiff line numberDiff line change
@@ -106,7 +106,7 @@ \subsection{菲涅耳反射率}\label{sub:菲涅耳反射率}
106106
r_{\perp} & =\frac{\eta_{\mathrm{i}}\cos\theta_{\mathrm{i}}-\eta_{\mathrm{t}}\cos\theta_{\mathrm{t}}}{\eta_{\mathrm{i}}\cos\theta_{\mathrm{i}}+\eta_{\mathrm{t}}\cos\theta_{\mathrm{t}}}\, ,
107107
\end{align*}
108108
其中$r_{\parallel}$是平行偏振光的菲涅耳反射率,
109-
$r_{\perp}$是垂直偏振光的反射率,$eta_{\mathrm{i}}$$\eta_{\mathrm{t}}$
109+
$r_{\perp}$是垂直偏振光的反射率,$\eta_{\mathrm{i}}$$\eta_{\mathrm{t}}$
110110
入射和透射介质的折射率,$\bm\omega_{\mathrm{i}}$$\bm\omega_{\mathrm{t}}$
111111
入射和透射方向。$\bm\omega_{\mathrm{t}}$由斯涅尔定律算出(见\refsub{镜面透射})。
112112

content/chap0805.tex

+3-1
Original file line numberDiff line numberDiff line change
@@ -56,8 +56,10 @@ \section{菲涅耳入射效应}\label{sec:菲涅耳入射效应}
5656
菲涅耳反射率。注意它和Torrance-Sparrow模型非常像。
5757
\citeauthor{AshikhminPhong}的模型的关键是推导出仍然遵循互易性和
5858
能量守恒的漫反射项。其推导依赖于\citet{Schlick1993}给出的对菲涅耳反射方程的近似,即
59+
\sidenote{译者注:原文以$\theta$来表示代入的角度变量,但可能引起歧义,
60+
实际上该论文代入的角度是半角大小$\theta_{\mathrm{h}}$,译文已修改。}
5961
\begin{align*}
60-
F_{\mathrm{r}}(\cos\theta)=R+(1-R)(1-\cos\theta)^5\, ,
62+
F_{\mathrm{r}}(\cos\theta_{\mathrm{h}})=R+(1-R)(1-\cos\theta_{\mathrm{h}})^5\, ,
6163
\end{align*}
6264
其中$R$是按法线入射时的曲面反射率。
6365

content/chap08ex01.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -500,7 +500,7 @@ \subsection{镜面微面模型的BTDF}\label{sub:镜面微面模型的BTDF}
500500
\begin{align}
501501
\left\lVert\frac{\partial{\bm\omega}_{\mathrm{m}}}{\partial{\bm\omega}_{\mathrm{i}}}\right\rVert
502502
=&\lim\limits_{\Delta{\bm\omega}_{\mathrm{i}}\to0}\frac{|\Delta{\bm\omega}_{\mathrm{m}}|}{|\Delta{\bm\omega}_{\mathrm{i}}|}
503-
=\frac{|\eta^2_{\mathrm{i}}\Delta{\bm\omega}_{\mathrm{i}}|
503+
=\lim\limits_{\Delta{\bm\omega}_{\mathrm{i}}\to0}\frac{|\eta^2_{\mathrm{i}}\Delta{\bm\omega}_{\mathrm{i}}|
504504
\cdot|{\bm\omega}_{\mathrm{i}}\cdot{\bm\omega}_{\mathrm{m}}|}
505505
{|\Delta{\bm\omega}_{\mathrm{i}}|\cdot|{\bm\omega}_{\mathrm{M}}|^2}\nonumber\\
506506
=&\frac{\eta^2_{\mathrm{i}}\cdot|{\bm\omega}_{\mathrm{i}}\cdot{\bm\omega}_{\mathrm{m}}|}
@@ -1521,7 +1521,7 @@ \subsubsection*{各向异性斜率分布的形状不变性}
15211521
=&\frac{1}{\pi}\left(\int_{-\infty}^{+\infty}\mathrm{e}^{-\frac{x_s^2}{\alpha_x^2}}\frac{\mathrm{d}x_s}{\alpha_x}\right)\left(\int_{-\infty}^{+\infty}\mathrm{e}^{-\frac{y_s^2}{\alpha_y^2}}\frac{\mathrm{d}y_s}{\alpha_y}\right)\nonumber\\
15221522
=&\frac{1}{\pi}\cdot\sqrt{\pi}\cdot\sqrt{\pi}=1\, .
15231523
\end{align}
1524-
对于Trowbridge-Reitz模型,注意到积分式
1524+
对于Trowbridge-Reitz模型,注意到积分式(这里$b>0$,而$C$为积分常数)
15251525
\begin{align}
15261526
\int\frac{\mathrm{d}x}{(b^2+x^2)^2}=\frac{x}{2b^2(b^2+x^2)}+\frac{1}{2b^3}\arctan\frac{x}{b}+C\, ,
15271527
\end{align}

content/readme.tex

+2-2
Original file line numberDiff line numberDiff line change
@@ -5,13 +5,13 @@
55

66
\noindent {\bfseries 英文原版}
77

8-
\noindent Copyright \copyright\ 2004-2024 Matt Pharr, Wenzel Jakob, and Greg Humphreys
8+
\noindent Copyright \copyright\ 2004-2025 Matt Pharr, Wenzel Jakob, and Greg Humphreys
99

1010
\noindent 官方网址:\url{https://www.pbr-book.org}\\
1111

1212
\noindent {\bfseries 本中译版}
1313

14-
\noindent Copyright \copyright\ 2021-2024 Kanition
14+
\noindent Copyright \copyright\ 2021-2025 Kanition
1515

1616
\noindent 更新网址:\url{https://github.com/kanition/pbrtbook}
1717

0 commit comments

Comments
 (0)