-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_experiment_effect_of_outlier_size.py
77 lines (64 loc) · 2.1 KB
/
run_experiment_effect_of_outlier_size.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
import numpy as np
import random
import pandas as pd
import networkx as nx
from helpers import sample_seeds, noise_level, sbr
from data_helpers import make_polarized_graphs_fewer_parameters
from exp_helpers import run_pipeline
from joblib import Parallel, delayed
from tqdm import tqdm
np.random.seed(12345)
random.seed(12345)
def run_one_for_parallel(g, true_comms, true_groupings, kappa, nn, nl, run_id):
try:
seeds, target_comm = sample_seeds(true_comms, true_groupings)
res = run_pipeline(g, seeds, kappa, target_comm, true_comms, true_groupings, verbose=0, return_details=True)
res['ground_truth_beta'] = sbr(
nx.adj_matrix(g, weight='sign'),
true_groupings[target_comm][0], true_groupings[target_comm][1]
)
except AssertionError as e:
import pickle as pkl
print('dumping result')
pkl.dump(
dict(
g=g, true_comms=true_comms, true_groupings=true_groupings,
kappa=kappa, nn=nn, nl=nl, run_id=run_id,
seeds=seeds, target_comm=target_comm
),
open('dumps/scene.pkl', 'wb')
)
print(e)
raise e
res['kappa'] = kappa
res['nn'] = nn
res['edge_noise_level'] = nl
res['run_id'] = run_id
return res
DEBUG = False
if DEBUG:
n_graphs = 1
n_reps = 1
else:
n_graphs = 10
n_reps = 32
nc = 20
k = 8
eta = 0.03
nn_list = np.arange(0, nc*2*k + 1, 2*nc)
kappa_list = [0.1, 0.3, 0.5, 0.7, 0.9]
perf_list = []
for nn in tqdm(nn_list):
for i in range(n_graphs):
g, true_comms, true_groupings = make_polarized_graphs_fewer_parameters(nc, nn, k, eta, verbose=0)
nl = noise_level(g)
print("nn=", nn)
print('noisy edge ratio: ', nl)
for kappa in kappa_list:
print("kappa=", kappa)
perf_list += Parallel(n_jobs=8)(
delayed(run_one_for_parallel)(g, true_comms, true_groupings, kappa, nn, nl, i)
for i in range(n_reps)
)
perf_df = pd.DataFrame.from_records(perf_list)
perf_df.to_csv('outputs/effect_of_outlier_size.csv')