Skip to content

In the process of learning machine learning, individuals summarize the relevant documentation and source code

Notifications You must be signed in to change notification settings

Echo-Nie/MachineLearning

Repository files navigation

MachineLearning

In the process of learning machine learning, individuals summarize the relevant documentation and source code


1 Linear Regression

LinearRegressionCode/
├── LinearRegression/                  # Directory for linear regression modules
│   ├── MultivariateLinearRegression.py  # Multivariate linear regression
│   ├── Non-linearRegression.py         # Non-linear regression
│   ├── UnivariateLinearRegression.py   # Uni variate linear regression
│   ├── linear_regression.py            # Main script for linear regression
├── LinearRegressionTest/
│   ├── img # Folder containing Jupyter Notebook related files
│   ├── LinearRegressionWithSKLearn.ipynb 
│   # Detailed analysis of each step of linear regression, combined with multiple experiments
├── data1
├── util

2 ModelEvaluationMethod

ModelEvaluationMethod/
├── data1  # Datasets
├── img # Images related to Jupyter Notebooks
├── ModelEvaluationMethod.ipynb 
# Code related to model evaluation methods, learning sklearn

3 Logistic

LogisticRegressionCode/
│
├── data1/
│
├── logistic_regression/
│   ├── logistic_regression.py       # Implementation of the Logistic Regression algorithm
│   ├── logistic_regression_with_linear_boundary.py  # Logistic Regression with linear boundary
│   └── NonLinearBoundary.py         # Handling non-linear boundaries
│
└── util/
    ├── features/              # Utility functions for feature processing
    │   ├── __init__.py         # Initialization
    │   ├── generate_polynomials.py  # Generate polynomial features
    │   ├── generate_sinusoids.py    # Generate sinusoidal features
    │   ├── normalize.py          # Data normalization
    │   └── prepare_for_training.py  # Prepare data for training
    └── hypothesis/             # Utility functions for hypothesis-related calculations
        ├── __init__.py         # Initialization
        ├── sigmoid.py          # Implementation of the sigmoid activation function
        └── sigmoid_gradient.py  # Calculation of the sigmoid gradient

About

In the process of learning machine learning, individuals summarize the relevant documentation and source code

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published