In the process of learning machine learning, individuals summarize the relevant documentation and source code
LinearRegressionCode/
├── LinearRegression/ # Directory for linear regression modules
│ ├── MultivariateLinearRegression.py # Multivariate linear regression
│ ├── Non-linearRegression.py # Non-linear regression
│ ├── UnivariateLinearRegression.py # Uni variate linear regression
│ ├── linear_regression.py # Main script for linear regression
├── LinearRegressionTest/
│ ├── img # Folder containing Jupyter Notebook related files
│ ├── LinearRegressionWithSKLearn.ipynb
│ # Detailed analysis of each step of linear regression, combined with multiple experiments
├── data1
├── util
ModelEvaluationMethod/
├── data1 # Datasets
├── img # Images related to Jupyter Notebooks
├── ModelEvaluationMethod.ipynb
# Code related to model evaluation methods, learning sklearn
LogisticRegressionCode/
│
├── data1/
│
├── logistic_regression/
│ ├── logistic_regression.py # Implementation of the Logistic Regression algorithm
│ ├── logistic_regression_with_linear_boundary.py # Logistic Regression with linear boundary
│ └── NonLinearBoundary.py # Handling non-linear boundaries
│
└── util/
├── features/ # Utility functions for feature processing
│ ├── __init__.py # Initialization
│ ├── generate_polynomials.py # Generate polynomial features
│ ├── generate_sinusoids.py # Generate sinusoidal features
│ ├── normalize.py # Data normalization
│ └── prepare_for_training.py # Prepare data for training
└── hypothesis/ # Utility functions for hypothesis-related calculations
├── __init__.py # Initialization
├── sigmoid.py # Implementation of the sigmoid activation function
└── sigmoid_gradient.py # Calculation of the sigmoid gradient