Skip to content

Remote Code Execution Vulnerability in vLLM Multi-Node Cluster Configuration

High severity GitHub Reviewed Published May 6, 2025 in vllm-project/vllm • Updated May 6, 2025

Package

pip vllm (pip)

Affected versions

>= 0.5.2, <= 0.8.5.post1

Patched versions

None

Description

Affected Environments

Note that this issue only affects the V0 engine, which has been off by default since v0.8.0. Further, the issue only applies to a deployment using tensor parallelism across multiple hosts, which we do not expect to be a common deployment pattern.

Since V0 is has been off by default since v0.8.0 and the fix is fairly invasive, we have decided not to fix this issue. Instead we recommend that users ensure their environment is on a secure network in case this pattern is in use.

The V1 engine is not affected by this issue.

Impact

In a multi-node vLLM deployment using the V0 engine, vLLM uses ZeroMQ for some multi-node communication purposes. The secondary vLLM hosts open a SUB ZeroMQ socket and connect to an XPUB socket on the primary vLLM host.

https://github.com/vllm-project/vllm/blob/c21b99b91241409c2fdf9f3f8c542e8748b317be/vllm/distributed/device_communicators/shm_broadcast.py#L295-L301

When data is received on this SUB socket, it is deserialized with pickle. This is unsafe, as it can be abused to execute code on a remote machine.

https://github.com/vllm-project/vllm/blob/c21b99b91241409c2fdf9f3f8c542e8748b317be/vllm/distributed/device_communicators/shm_broadcast.py#L468-L470

Since the vulnerability exists in a client that connects to the primary vLLM host, this vulnerability serves as an escalation point. If the primary vLLM host is compromised, this vulnerability could be used to compromise the rest of the hosts in the vLLM deployment.

Attackers could also use other means to exploit the vulnerability without requiring access to the primary vLLM host. One example would be the use of ARP cache poisoning to redirect traffic to a malicious endpoint used to deliver a payload with arbitrary code to execute on the target machine.

References

@russellb russellb published to vllm-project/vllm May 6, 2025
Published to the GitHub Advisory Database May 6, 2025
Reviewed May 6, 2025
Published by the National Vulnerability Database May 6, 2025
Last updated May 6, 2025

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Adjacent
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
High
Integrity
High
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:A/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(25th percentile)

Weaknesses

CVE ID

CVE-2025-30165

GHSA ID

GHSA-9pcc-gvx5-r5wm

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.