Skip to content

open-starlab/Event

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

23 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenSTARLab Event Modeling package

Documentation Status dm ArXiv

Introduction

The OpenSTARLab Event package is the fundamental package for event modeling. It is designed to provide a simple and efficient way to train, inference, and simulate events. This package supports the data preprocessed by the OpenSTARLab PreProcessing package.

This package is continuously evolving to support future OpenSTARLab projects. If you have any suggestions or encounter any bugs, please feel free to open an issue.

Soccer Event Modeling

Table: Comparison of model performance on soccer event prediction

Note: Arrows indicate whether a higher (↑) or lower (↓) value is better.
Models are ranked by publication year. Bold values indicate the best performance (unrounded). For more details refer to our paper ArXiv

Wyscout Dataset

Model (Year) Action Acc. ↑ Action F1 ↑ Time-MAE ↓ X-MAE ↓ Y-MAE ↓ FLOPs Num Params
MAJ 0.57 0.08 3.60 18.97 52.55 - -
Seq2Event (2022) 0.67 0.16 3.41 7.11 15.72 112M 135K
NMSTPP (2023) 0.67 0.17 3.34 6.94 15.08 296M 121K
LEM_1 (2024) 0.67 0.17 3.07 8.34 21.44 50M 98K
LEM_3 (2024) 0.67 0.20 2.69 7.62 21.83 20M 39K
FMS (2024) 0.67 0.16 3.27 11.27 24.19 930M 782K

StatsBomb Dataset

Model (Year) Action Acc. ↑ Action F1 ↑ Time-MAE ↓ X-MAE ↓ Y-MAE ↓ FLOPs Num Params
MAJ 0.40 0.06 2.76 20.72 33.32 - -
Seq2Event (2022) 0.65 0.23 2.43 7.22 6.86 4.03B 413K
NMSTPP (2023) 0.65 0.23 2.53 7.38 6.86 2.02B 217K
LEM_1 (2024) 0.65 0.24 2.23 7.36 8.21 66M 128K
LEM_3 (2024) 0.66 0.25 2.07 7.07 8.32 19M 38K
FMS (2024) 0.65 0.24 2.35 7.77 8.82 3.66B 1.29M

Installation

  • Install pytorch (recommended version 2.4.0 linux pip python3.8 cuda12.1)
pip install torch torchvision torchaudio
  • To install this package via PyPI
pip install openstarlab-event
  • To install manually
git clone [email protected]:open-starlab/Event.git
cd ./Event
pip install -e .

Current Features

Sports

RoadMap

  • Release the package
  • Provide pre-trained models

Other Information

Development torch version

version 2.4.0 linux pip python3.8 cuda12.1 

Developer

Calvin Yeung
Calvin Yeung

💻
Keisuke Fujii
Keisuke Fujii

🧑‍💻

About

Event Data Modeling Package

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages